A wireless local area network (WLAN) links devices via a wireless distribution method (typically spread-spectrum or OFDM) and usually provides a connection through an access point to the wider Internet. This gives users the mobility to move around within a local coverage area and still be connected to the network.
Wireless LANs have become popular in the home due to ease of installation and the increasing popularity of laptop computers. Public businesses such as coffee shops and malls have begun to offer wireless access to their customers, sometimes for free. Large wireless network projects are being put up in many major cities: New York City, for instance, has begun a pilot program to cover all five boroughs of the city with wireless Internet access.
History
In 1970, Norman Abramson, a professor at the University of Hawaii, developed the world’s first computer communication network, ALOHAnet, using low-cost ham-like radios. With a bi-directional star topology, the system connected seven computers deployed over four islands to communicate with the central computer on the Oahu Island without using phone lines.
"In 1979, F.R. Gfeller and U. Bapst published a paper in the IEEE Proceedings reporting an experimental wireless local area network using diffused infrared communications. Shortly thereafter, in 1980, P. Ferrert reported on an experimental application of a single code spread spectrum radio for wireless terminal communications in the IEEE National Telecommunications Conference. In 1984, a comparison between infrared and CDMA spread spectrum communications for wireless office information networks was published by Kaveh Pahlavan in IEEE Computer Networking Symposium which appeared later in the IEEE Communication Society Magazine. In May 1985, the efforts of Marcus led the FCC to announce experimental ISM bands for commercial application of spread spectrum technology. Later on, M. Kavehrad reported on an experimental wireless PBX system using code division multiple access. These efforts prompted significant industrial activities in the development of a new generation of wireless local area networks and it updated several old discussions in the portable and mobile radio industry.
The first generation of wireless data modems was developed in the early 1980s by amateur radio operators, who commonly referred to this as packet radio. They added a voice band data communication modem, with data rates below 9600-bit/s, to an existing short distance radio system, typically in the two meter amateur band. The second generation of wireless modems was developed immediately after the FCC announcement in the experimental bands for non-military use of the spread spectrum technology. These modems provided data rates on the order of hundreds of kbit/s. The third generation of wireless modem then aimed at compatibility with the existing LANs with data rates on the order of Mbit/s. Several companies developed the third generation products with data rates above 1 Mbit/s and a couple of products had already been announced by the time of the first IEEE Workshop on Wireless LANs.
The first of the IEEE Workshops on Wireless LAN was held in 1991. At that time early wireless LAN products had just appeared in the market and the IEEE 802.11 committee had just started its activities to develop a standard for wireless LANs. The focus of that first workshop was evaluation of the alternative technologies. By 1996, the technology was relatively mature, a variety of applications had been identified and addressed and technologies that enable these applications were well understood. Chip sets aimed at wireless LAN implementations and applications, a key enabling technology for rapid market growth, were emerging in the market. Wireless LANs were being used in hospitals, stock exchanges, and other in building and campus settings for nomadic access, point-to-point LAN bridges, ad-hoc networking, and even larger applications through Internetworking. The IEEE 802.11 standard and variants and alternatives, such as the wireless LAN interoperability forum and the European HiperLAN specification had made rapid progress, and the unlicensed PCS Unlicensed Personal Communications Services and the proposed SUPERNet, later on renamed as U-NII, bands also presented new opportunities.
WLAN hardware was initially so expensive that it was only used as an alternative to cabled LAN in places where cabling was difficult or impossible. Early development included industry-specific solutions and proprietary protocols, but at the end of the 1990s these were replaced by standards, primarily the various versions of IEEE 802.11 (Wi-Fi). An alternative ATM-like 5 GHz standardized technology, HiperLAN/2, has so far not succeeded in the market, and with the release of the faster 54 Mbit/s 802.11a (5 GHz) and 802.11g (2.4 GHz) standard
Architecture
Stations
All components that can connect into a wireless medium in a network are referred to as stations.
All stations are equipped with wireless network interface cards (WNICs).
Wireless stations fall into one of two categories: access points and clients.
Access points (APs), normally routers, are base stations for the wireless network. They transmit and receive radio frequencies for wireless enabled devices to communicate with.
Wireless clients can be mobile devices such as laptops, personal digital assistants, IP phones, or fixed devices such as desktops, laptops, and workstations that are equipped with a wireless network interface.
Basic service set
The basic service set (BSS) is a set of all stations that can communicate with each other.
There are two types of BSS: Independent BSS (also referred to as IBSS) and infrastructure BSS.
Every BSS has an identification (ID) called the BSSID, which is the MAC address of the access point servicing the BSS.
An independent BSS (IBSS) is an ad-hoc network that contains no access points, which means they can not connect to any other basic service set.
An infrastructure can communicate with other stations not in the same basic service set by communicating through access points.
Extended service set
An extended service set (ESS) is a set of one or more interconnected BSSes. Access points in an ESS are connected by a distribution system. Each ESS has an ID called the SSID which is a 32-byte (maximum) character string.
Distribution system
A distribution system (DS) connects access points in an extended service set. The concept of a DS can be used to increase network coverage through roaming between cells.
Types of wireless LANs
Peer-to-peer
An ad-hoc network is a network where stations communicate only peer to peer (P2P). There is no base and no one gives permission to talk. This is accomplished using the Independent Basic Service Set (IBSS).
A peer-to-peer (P2P) network allows wireless devices to directly communicate with each other. Wireless devices within range of each other can discover and communicate directly without involving central access points. This method is typically used by two computers so that they can connect to each other to form a network.
If a signal strength meter is used in this situation, it may not read the strength accurately and can be misleading, because it registers the strength of the strongest signal, which may be the closest computer.
IEEE 802.11 define the physical layer (PHY) and MAC (Media Access Control) layers based on CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). The 802.11 specification includes provisions designed to minimize collisions, because two mobile units may both be in range of a common access point, but out of range of each other.
The 802.11 has two basic modes of operation: Ad hoc mode enables peer-to-peer transmission between mobile units. Infrastructure mode in which mobile units communicate through an access point that serves as a bridge to a wired network infrastructure is the more common wireless LAN application the one being covered. Since wireless communication uses a more open medium for communication in comparison to wired LANs, the 802.11 designers also included shared-key encryption mechanisms: Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA, WPA2) to secure wireless computer networks.
Bridge
A bridge can be used to connect networks, typically of different types. A wireless Ethernet bridge allows the connection of devices on a wired Ethernet network to a wireless network. The bridge acts as the connection point to the Wireless LAN.
Wireless distribution system
A Wireless Distribution System is a system that enables the wireless interconnection of access points in an IEEE 802.11 network. It allows a wireless network to be expanded using multiple access points without the need for a wired backbone to link them, as is traditionally required. The notable advantage of WDS over other solutions is that it preserves the MAC addresses of client packets across links between access points.
An access point can be either a main, relay or remote base station. A main base station is typically connected to the wired Ethernet. A relay base station relays data between remote base stations, wireless clients or other relay stations to either a main or another relay base station. A remote base station accepts connections from wireless clients and passes them to relay or main stations. Connections between "clients" are made using MAC addresses rather than by specifying IP assignments.
All base stations in a Wireless Distribution System must be configured to use the same radio channel, and share WEP keys or WPA keys if they are used. They can be configured to different service set identifiers. WDS also requires that every base station be configured to forward to others in the system.
WDS may also be referred to as repeater mode because it appears to bridge and accept wireless clients at the same time (unlike traditional bridging). It should be noted, however, that throughput in this method is halved for all clients connected wirelessly.
When it is difficult to connect all of the access points in a network by wires, it is also possible to put up access points as repeaters.
Roaming
There are 2 definitions for wireless LAN roaming:
- Internal Roaming (1): The Mobile Station (MS) moves from one access point (AP) to another AP within a home network because the signal strength is too weak. An authentication server (RADIUS) assumes the re-authentication of MS via 802.1x (e.g. with PEAP). The billing of QoS is in the home network. A Mobile Station roaming from one access point to another often interrupts the flow of data between the Mobile Station and an application connected to the network. The Mobile Station, for instance, periodically monitors the presence of alternative access points (ones that will provide a better connection). At some point, based upon proprietary mechanisms, the Mobile Station decides to re-associate with an access point having a stronger wireless signal. The Mobile Station, however, may lose a connection with an access point before associating with another access point. In order to provide reliable connections with applications, the Mobile Station must generally include software that provides session persistence.
- External Roaming (2): The MS (client) moves into a WLAN of another Wireless Internet Service Provider (WISP) and takes their services (Hotspot). The user can independently of his home network use another foreign network, if this is open for visitors. There must be special authentication and billing systems for mobile services in a foreign network.
( Source : http://en.wikipedia.org/wiki/Wireless_LAN )
No comments:
Post a Comment